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Abstract
The lattice dynamics of NdCu2 has been investigated with inelastic neutron
scattering measurements. An uniaxial Born–von Karman model has been
used to calculate the phonon dispersion relation. A verification of a phonon–
crystal electric field (CEF) interaction was found from temperature dependent
measurements of phonons and CEF excitations. The impact of the phonon–
CEF interaction was found to be strongest at the Brillouin zone centre among
the 7.5 meV Ag-phonon mode and the ε4 CEF level. This has been verified
with theoretical model calculations.

1. Introduction

Crystal electric field (CEF) phenomena are single particle excitations, well known to exist in
rare earth based compounds. The ground state multiplet of a RE-ion with total momentum
J is split into a series of CEF states due to the electric field caused by the surrounding ions
in a solid. In contrast, phonons are collective phenomena where more than 1010 particles are
participating. An interaction of both phenomena (lattice vibrations and CEF excitations) are
based on the following idea. The lattice vibrations causes a change of the local electric field
in the neighbourhood of a given RE-ion and thus a change of the CEF excitation energies.
However, normally this kind of interaction among both phenomena is too small to be observed
in experiment (neutron diffraction, Raman spectroscopy, etc), although there are a few cases
known where an interaction of the phonons and the CEF has been verified. One of the first
reports about such an interaction concerns the cubic Laves phases CeAl2. In this compound a
softening of the acoustic phonon branches with decreasing temperature was explained as being
caused by the CEF–phonon interaction [1]. A theoretical description of this phenomena was
given by Thalmeier and Fulde [2, 3]. Later a CEF–phonon interaction was observed in the

0953-8984/04/325751+18$30.00 © 2004 IOP Publishing Ltd Printed in the UK 5751

http://stacks.iop.org/JPhysCM/16/5751


5752 K Hense et al

Raman spectra of LiTbF4 by Dörfer and Schraak [4]. More recently evidence for this kind of
interaction has been verified in NdBa2Cu3O7−δ [5–7] and Pr2Sr2NdBa2Cu3O8+δ [8]. The first
hints for the existence of the CEF–phonon interaction within the family of RCu2 compounds
were reported for CeCu2 by Loewenhaupt [9, 10]. Detailed investigations of the CEF–phonon
interaction in CeCu2 based on neutron diffraction experiments are in progress and will be
published soon. NdCu2 crystallizes like CeCu2 in an orthorhombic structure with the space
group Imma. This compound orders antiferromagnetically at 6.5 K [11]. Among the family
of RCu2 compounds NdCu2 is by far the most intensively investigated [11–18].

After we finished the study of the lattice dynamics of the isostructural nonmagnetic YCu2

compound [19] we continued to investigate also the lattice dynamics of the RCu2 compounds
beginning with NdCu2. We expected that if a CEF–phonon interaction in NdCu2 is detectable in
neutron experiments, it should be observable when studying the temperature variation of either
the lattice dynamics or the CEF excitations. Thus the aim of this study was twofold: to measure
the lattice dynamics of NdCu2 and to verify the existence of the CEF–phonon interaction.

2. Experimental details

2.1. Tripple axis spectrometer measurements

The single crystal used for the experiments is called in the literature the ‘Viennese
Crystal’ [14, 16, 17, 20]. With this crystal, triple axis spectrometer measurements were carried
out with the UNIDAS spectrometer (FZ-Jülich), the E1 spectrometer (HMI-Berlin), and with
the 1T1 spectrometer (LLB-Saclay). UNIDAS and E1 measurements were carried out in the
constant-ki mode, whereas the 1T1 spectrometer was used in the constant-k f mode. In all the
experiments the (002) Bragg-reflection of pyrolytic graphite was used as monochromator and
analyser. In order to prevent contamination of higher order harmonics, a PG-filter was inserted
in the incoming beam (E1 and UNIDAS), or in the outgoing beam (1T1). For the 1T1 a bend
analyser and monochromator was used, whereas for the UNIDAS and the E1 spectrometer
{open-40′-40′-open} or {open-40′-40′-40′} collimation was used. All spectrometers have been
used in the ‘zig-zag’ configuration.

2.2. Time of flight measurements

Time of flight measurement on a powdered sample material of NdCu2 were performed on the
LRMECS spectrometer at Argonne. The incoming neutron energy in the LRMECS experiment
was 35 meV. The energy resolution was about 2 meV.4 Below 4 meV, the elastic and quasi-
elastic contributions can hardly be separated from the data in this experiment, therefore, data
of this region has to be excluded from the investigation. The phonon density of states (PDOS)
in the region below 4 meV has been approximated by a quadratic increase as a function of
energy, as expected from the linear slope of the acoustic phonon branches.

3. Phonons in NdCu2

3.1. Crystal structure

Most of the RCu2 compounds crystallize in the orthorhombic CeCu2-type structure. This
structure belongs to the nonsymmorphic space group Imma (D28

2h). The R-ions occupy the
Wyckoff 4(e) sites (Cz

2v symmetry) and the Cu-ions the 8(h) sites (Cs symmetry). There exist
only two nonequivalent ion positions, one for the R- and one for the Cu-ions. Three position

4 http://www.pns.anl.gov/lrmecs/lrmecs.html

http://www.pns.anl.gov/lrmecs/lrmecs.html
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Figure 1. Ion arrangement in two adjacent orthorhombic unit cells of NdCu2. The large symbols
indicate the Nd-ions and the small symbols the Cu-ions. The lines and the numbers indicate the
springs taken into account in the Born–von Karman spring model (see table 2).

Table 1. Structure parameters for NdCu2. The space group of this structure is Imma (Nr. 74),
a = 4.3917 ± 0.0004 Å, b = 7.0350 ± 0.0006 Å, c = 7.4186 ± 0.0011 Å. Nd-ions occupy the
4(e)-sites, Cu-ions the 8(h)-sites. The neodymium fractional position parameter is zNd = 0.5383,
these of copper are yCu = 0.0506, zCu = 0.1659 (data are taken from [11]).

Ion Ion
number type Cartesian coordinates

1 Nd1 0 1/4 zNd

2 Nd2 0 −1/4 −zNd

3 Cu1 0 yCu zCu

4 Cu2 0 −yCu −zCu

5 Cu3 0 −1/2 + yCu −zCu

6 Cu4 0 1/2 − yCu zCu

+(1/2, 1/2, 1/2)

parameters (yCu, zCu, zNd) are free. The positions of the R- and Cu-ions in the unit cell are
depicted in figure 1. The structure parameters are listed in table 1.

As the primitive cell consists of six ions, there are 18 phonon branches, which show no
degeneracy along the three main symmetry directions. Nine of these branches are Raman
active [21] at the �-point (a discussion of the lattice dynamics of the isostructural YCu2

compound can be found in [19]).

3.2. Phonon dispersion relation

Since there are 15 optical phonon branches within a comparatively narrow energy range of
about 10 meV, additional information is needed to classify the measured phonons with respect to
their symmetry. From the inelastic one-phonon neutron scattering cross section it follows that
the structure factor depends on the scalar product of the scattering vector �κ and the polarization
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Table 2. Columns from left to right: bonding between the different Cu–Cu, Nd–Cu and
Nd–Nd ions taken into account in the Born–von Karman model; a numbering of the springs
indicated in figure 1 (odd numbers correspond to longitudinal, even numbers to transversal force
constants); bonding length (length of the springs); longitudinal and transversal force constants.
The arrangement is made according to increasing bonding length.

Length Longitudinal Transversal
Bond type Spring number (Å) (N m−1) (N m−1)

Cu1–Cu3 17/18 2.52 26.9 −0.2
Cu1–Cu2 19/20 2.56 27.3 5.7
Cu1–Cu4 15/16 2.81 6.3 0.5

Nd1–Cu2 13/14 3.01 27.4 −2.2
Nd1–Cu2 11/12 3.05 13.8 −2.3
Nd1–Cu1 9/10 3.10 21.5 −2.2
Nd1–Cu1 7/8 3.19 12.1 0.7

Nd1–Nd2 5/6 3.56 31.8 −3.7
Nd1–Nd2 3/4 3.83 13.1 −3.5
Nd1–Nd1 1/2 4.39 12.2 −2.8

vector of the phonon �e�qν,i [19]. In the following we use �κ = �Q + �q , for a scattering vector
in the extended zone scheme. The vector �Q indicates the position of a zone centre (�-point)
in the extended zone scheme and �q is defined as a vector within a Brillouin zone. As the
polarization vector is predetermined by the symmetry, one obtains information concerning the
scattering intensity from symmetry considerations. Measurements performed at the same �q
and energy-range but in different Brillouin zones in the extended zone scheme, allowing the
assignment of the peaks in the measured spectra to distinct phonon branches.

Experimental data are shown by symbols in figure 2. These data are received from
constant-q scans. For the low energy range of the acoustic phonons constant-energy scans
have been performed. The error bars mark the full width at half maximum (FWHM) of the
neutron peaks.

In order to calculate phonon dispersion relations a Born–von Karman model with 20 fitting
parameters was applied. As starting parameters for the fit procedure the spring constants for
YCu2 given in [19] have been used. It follows from symmetry considerations that for each
of the three main symmetry directions there exist four irreducible representations. For clarity,
each of these representations is shown in a separate diagram in figure 2. The solid curves in the
four diagrams of figure 2 show the phonon dispersion relations obtained from the Born–von
Karman model fitted to the experimental data. The assignment of the experimental points to
one of the four representations was done according to the local symmetry. The force constants
obtained from the fit are given in table 2.

3.3. Phonon density of states

The now known dispersion relation allows us to calculate the phonon density of states (PDOS).
These results will now be compared with a measurement of the PDOS of NdCu2 on a powdered
sample material. We consider this procedure as a proof of the model calculation.

However, in order to compare the calculated phonon density of states with those obtained
by the inelastic neutron scattering experiment, one should not simply count the number of
phonons within a given energy range, but also calculate the neutron weighted PDOS. For this
calculation the contributions of all scattering vectors �κ , allowed by geometric conditions in the
scattering experiment, are summed up and corrected for the different scattering cross sections
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Figure 2. Phonon dispersion relation of NdCu2. The four pictures (a)–(d) represent the four
irreducible representations. Each picture is divided into three sections showing the three main
symmetry directions. The symbols give the peak positions of the neutron scattering experiments.
The curves are the result of the Born–von Karman fit procedure. The horizontal lines (εγ ) mark
the positions of the CEF levels.

in various shells of Brillouin zones with |�κ | = constant

g(ω) =
∑

�κ

ω

κ2

1

n(ω) + 1

(
d2σ

d	 dω

)inel

coh

(1)
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Figure 2. (Continued.)

with the one phonon inelastic coherent scattering cross section (see also [30]):

(
d2σ

d	 dω

)inel

coh
= k f

ki

(2π)3

V

∑
�Q

∑
�qν

δ( �Q + �q − �κ)|H�qν(�κ)|2S�qν(ω) (2a)

S�qν(ω) = 1

2ω�qν

{n �qνδ(ω + ω�qν) + (1 + n �qν)δ(ω − ω�qν)} (2b)
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Figure 3. Phonon density of states (PDOS) of NdCu2. The symbols show the results of the time
of flight experiment. The histograms are the results of the neutron weighted PDOS calculations
based on the Born–von Karman model.

H�qν(�κ) =
∑

i

b̄i√
Mi

e−Wi (�κ)eiı �κ · �Ri {�κ · �e�qν,i }. (2c)

The
∑

�Q is a sum over all reciprocal lattice vectors, the index ν is used to distinguish
between different phonon branches. The phonon frequency and the polarization vector are ω�qν

and �e�qν,i , respectively. The first part in equation (2b) is the contribution of phonon annihilation,
whereas the second accounts for phonon creation. The term e−Wi (�κ) is the Debye–Waller factor,
which, however, will be neglected in the following.

In figure 3, the experimental data and the calculated neutron weighted PDOS are shown.
Taking into account only the contribution of a specific sort of ion (Nd or Cu), it is possible
to calculate the partial density of states. As can be seen in figure 3 the general feature of the
measured PDOS is satisfactorily reproduced by the calculation. The low energy part of the
experimental data set has been cancelled because of difficulties in correcting the quasi elastic
contribution to the spectra, as well as the incoherent scattering. Therefore, the data set was
completed by a quadratic relation down to zero energy.

4. Crystal electric field excitations

4.1. Crystal electric field Hamiltonian

The local symmetry of the ions (Nd3+) in the CeCu2-type structure is C2v. Therefore, nine
CEF parameters are nonzero [22]. As Nd3+ has a 4I9/2 ground-state, the CEF splits it into five
Kramers doublets.

The description of the CEF used in this work is based on a point charge model [24]. The
ions within one primitive unit cell n′ are enumerated by the index i ′. The undisturbed position
of the ion i ′ in the cell n′ is given by �Rn′i ′ . The difference vector between two ions at the
position �Rni and �Rn′i ′ is:

�Rn′i ′,ni = �Rn′i ′ − �Rni . (3)

The potential seen by the ion ni is V 0
ni(�r), whereby �r = 0 always corresponds to the

position �Rni of the ion under consideration. It is caused by all the surrounding ions at the
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Table 3. Comparison of the CEF parameters σα
m deduced from the experiment (σ

exp
mα ) [11] and

calculated from a point charge model (σ PCM
mα ). In order to quantify the agreement of both values

the ratio Smα is given in the last column. The charge of Nd and Cu was chosen to be qNd = 0.33e
and qCu = −0.165e, respectively (e = 1.6 × 10−19 C). The Nd-ion parameters used for the
point charge model calculation are: 〈r2〉 = 0.312 Å2, 〈r4〉 = 0.2282 Å4, 〈r6〉 = 0.3300 Å6,
λ2 = −0.643 × 10−2, λ4 = −2.91 × 10−4, λ6 = −38 × 10−6 [23].

CEF parameter σ
exp
mα (K) σ PCM

mα (K) Smα

σ 0
2 1.35 × 100 1.78 × 100 0.758

σ 2
2 1.56 × 100 2.31 × 100 0.675

σ 0
4 2.23 × 10−2 1.37 × 10−2 1.628

σ 2
4 1.01 × 10−2 1.38 × 10−2 0.732

σ 4
4 1.96 × 10−2 −2.75 × 10−3 −7.127

σ 0
6 5.52 × 10−4 2.81 × 10−4 1.964

σ 2
6 1.35 × 10−4 −1.03 × 10−4 −1.301

σ 4
6 4.89 × 10−4 −2.21 × 10−4 −2.213

σ 6
6 4.25 × 10−3 −5.29 × 10−5 −80.34

positions �Rn′i ′ with the point charges qi ′ and is given by:

V 0
ni(�r) =

∑
n′i ′( �=ni)

qi ′

| �Rn′i ′,ni − �r | , (4a)

V 0
ni(�r) has the symmetry of the site of the ion ni . This potential can be expanded in terms of

spherical harmonics (or tesseral harmonics Zmα = [Y −α
m + (−1)αY α

m ]/
√

2 in order to avoid
imaginary quantities). Using the usual expanding formula for 1/R, the potential V 0

ni is now
given by:

V 0
ni(r,, φ) =

∞∑
m=0

rm
m∑

α=−m

∑
n′i ′( �=ni)

qi ′

Rm+1
n′i ′,ni

4π

(2m + 1)
Zmα(n′i ′,ni , φn′i ′,ni )

︸ ︷︷ ︸
(γ ni

mα)0

Zmα(, φ) (4b)

where (γ ni
mα)

0 depends only on the local symmetry of the ion under consideration. Using this
method, the undisturbed CEF Hamiltonian for the ion ni can be written as:

H0
CEF(ni) =

∑
mα

(γ ni
mα)

0〈rm(i)〉λm Oα
m(ni) =

∑
mα

σα
m(ni)Oα

m(ni) (5)

where the λm are numerical factors occurring in Stevens operators equivalents and σα
m are the

CEF parameters. The experiment allows an estimation of these CEF parameters by fitting the
calculated magnetic scattering cross section to measured neutron data. The CEF parameters
obtained in this way by Gratz et al [11] for NdCu2 are given in column σ

exp
mα of table 3, the results

of a point charge model calculation in column σ PCM
mα . A calculation of CEF parameters based

on the assumption that the charges are located at the position of the nuclei of the surrounding
ions is a rough approximation for metals where the shielding-effect of the conduction electrons
can hardly be neglected. The discrepancies between the point charge model calculation and
the experimental determined CEF parameters is quantified by the ratio Smα in the last column
of table 3. In the calculation of the CEF–phonon interaction these Smα-values are used as
scaling factors.
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Table 4. Comparison of the measured CEF energy levels and those calculated using the point
charge model.

εγ Measured (meV) Calculated (meV)

ε5 14.1 13.6
ε4 7.2 7.0
ε3 5.0 5.2
ε2 2.9 2.5
ε1 0.0 0.0

The total CEF Hamiltonian of the undisturbed crystal is given by the sum of the
Hamiltonians of each ion

H0
CEF =

∑
ni

H0
CEF(ni). (6a)

This total Hamiltonian can also be written in terms of the eigenstates of the Hamiltonian
or in second quantization using fermion-creation and -annihilation operators:

H0
CEF =

∑
ni

∑
γ

|γ, ni〉(εni
γ + µni)〈γ, ni | =

∑
ni

∑
γ

(εni
γ + µni)c†

γ (ni)cγ (ni) (6b)

where εni
γ denotes the energy of the crystal field level γ of the ion ni . The c†

γ (ni) and cγ (ni) are
fermion-creation and -annihilation operators for the site ni . The chemical potential is denoted
by µni . For a description of the second quantization of fermion states see [25].

In table 4 the experimental data for εγ obtained at 10 K (see [11]) are compared with the
calculated εγ -values based on the point charge model.

4.2. Experimental evidence for the CEF–phonon interaction

From table 4 it follows that the CEF excitation energies range from about 3 meV up to 14 meV,
which is about the same as the 10 meV energy interval, where all the optical phonon branches
of NdCu2 exist. This is an important prerequisite for a measurable CEF–phonon interaction.

An indication for the existence of the CEF–phonon interaction observable in the neutron
experiment is shown in figure 4. In this diagram the normalized peak intensities I(0κ0)/I(020)

of the ε3 (5.0 meV) and the ε4 (7.2 meV) CEF excitations as a function of the length of the
scattering vector �κ in the b-direction are given. From the theory it follows that the neutron peak
intensity for scattering due to CEF excitations (magnetic scattering) decreases monotonically
with increasing �κ. This is indeed the case for the ε3 CEF excitation. The same tendency exists
for the ε4 (7.2 meV) CEF excitation, however, with the exception for κ = 4. The enlarged
intensity at (040) can be understood as caused by the additional CEF–phonon interaction,
which will be considered in the following section. This observation was a first hint that the ε4

CEF excitation might be a possible candidate for a measurable interaction effect between the
CEF and the phonons.

At the beginning of the following section the concept model used for the discussion of
the CEF–phonon interaction will be outlined. A quantitative discussion of the influence of the
phonons on the ε4 CEF level follows. Finally the influence of the CEF on phonon modes is
considered.
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Figure 4. Neutron peak intensity of the ε3 (•) and the ε4 (◦) CEF excitations measured at 50 K
along the b-direction at (020), (030), (040) and (050). Data are scaled to the (020) intensity.

5. CEF–phonon interaction

5.1. Interaction Hamiltonian

When allowing the ions n′i ′ to be shifted by a displacement vector �un′i ′ with respect to their
equilibrium position the potential in equation (4a) has to be modified taking into account the
corresponding displacement

Vni(�r) =
∑

n′i ′( �=ni)

qi ′

|( �Rn′i ′ + �un′i ′) − ( �Rni + �uni) − �r | . (7)

Consequently (γ ni
mα)

0 in equation (4b) is changed to γ ni
mα depending on �uni . Using the Taylor

series expansion

γ ni
mα(�u) = γ ni

mα

∣∣∣�u=0
+

∑
n′i ′

3∑
l=1

(
∂γ ni

mα

∂(�un′i ′)l

)
�u=0

(�un′i ′)l + · · · (8)

the first order expansion term is usually used for the description of the interaction. When
dealing with the interaction of phonons with the CEF, the displacement is due to the lattice
vibrations

(un′i ′)l =
√

1

2N Mi ′

∑
�qν

√
1

ω�qν

e�qν,i ′
l eiı �q �Rn′ i′ (a†

−�qν
+ a�qν), (9)

where the energy of a phonon belonging to the branch ν with wavevector �q is given by ω�qν . The
sum over �q had to be done for all wavevectors inside the first Brillouin zone. The l-component
of the polarization vector of ion i ′ of the phonon �qν is given by e�qν,i ′

l . The a†
−�qν

and a�qν are
boson-creation and -annihilation operators, respectively.

Using equation (9), equation (8) can be written as:

γ ni
mα = (γ ni

mα)0 +
1√
N

∑
�qν

∑
n′i ′

3∑
l=1

√
1

2Mi ′ω�qν

(
∂γ ni

mα

∂(�un′i ′)l

)
�u=0

e�qν,i ′
l eiı �q �Rn′ i′

︸ ︷︷ ︸
A�qν,ni

mα

(a†
−�qν

+ a�qν). (10)
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The CEF Hamiltonian including the interaction with the phonons is now given by

HCEF(ni) = H0
CEF(ni) +

1√
N

∑
�qν

∑
mα

V �qν,i
mα (a†

−�qν
+ a�qν)Oα

m(ni) (11)

with the interaction strength

V �qν,i
mα = 〈rm(i)〉λmA�qν,ni

mα . (12)

In second quantization the total Hamiltonian of the interacting system of phonons and CEF
excitations reads

H = H0
phon + H0

CEF + Hint =
∑
�qν

ω�qν(a
†
�qν

a�qν + 1
2 ) +

∑
γ,ni

(εni
γ + µni)c†

γ (ni)cγ (ni)

+
1√
N

∑
γ ′,γ

∑
�qν

∑
mα,ni

V �qν,i
mα 〈γ ′, ni |Oα

m |γ, ni〉︸ ︷︷ ︸
Oα

m (γ ′,γ )

(a†
−�qν

+ a�qν)c
†
γ ′(ni)cγ (ni). (13)

The interaction Hamiltonian Hint causes the system to make transitions from the state
|γ 〉 ⊗ |{n �qν}〉 to the state |γ ′〉 ⊗ |{n �qν} ± 1�qν〉, meaning that the CEF state changes from

γ → γ ′, and one phonon �qν is created or annihilated. The interaction strength V �qν,i
mα contains

the symmetry of the lattice-distortion caused by the phonon �qν. It is obvious, that all possible
symmetries of distortions are contained in the irreducible representations of the group of the
site symmetry of the ion. This is equivalent to the fact, that the operator

∑
mα V �qν,i

mα Oα
m has to

transform according to an irreducible representation of the group of the site symmetry of the ion
under consideration. According to Eyring et al [21], the representations of the point group Cz

2v
are labelled A1; A2; B1 and B2. They transform like the coordinates (x2, y2 and z2) xy; xz
and yz, respectively. When using Stevens operator equivalents, the Cartesian coordinates can
be replaced by the corresponding coordinates of the angular momentum operator.

Using the method given by Herzfeld and Meijer [26], one finds that only phonons causing
distortions of local symmetry A1 are capable of coupling to the CEF. This method is an
application of the fact that the distorted CEF cannot lift the Kramers degeneracy. Therefore, the
coupling strength has to be zero for coupling-operators (produced by symmetry considerations)
causing the Kramers degenerated states to split.

The �-point phonons capable of coupling to the CEF belong to the irreducible
representation Ag (see also [27]). It is important to note that, from symmetry considerations,
one gets only the phonons that might couple. However, the coupling strength can be so small
that the interaction is not measurable.

5.2. Calculation of neutron scattering functions

For the calculation of the neutron–phonon and the neutron–CEF scattering functions, the
Matsubara Green functions formalism in the random phase approximation (RPA) [3, 28, 29]
will be used. The self energy operators �C for the electrons and �Q for the phonons occurring
in Dysons equations

G = G0 + G0�C G or G−1 = G−1
0 − �C

with G0(γ, ω) = 1

ω − εγ + iıη0+
(14a)

D = D0 + D0�Q D or D−1 = D−1
0 − �Q

with D0(�qν, ω) = ω�qν

ω2 − ω2
�qν

+ iıη0+
(14b)
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Figure 5. Feynman graphs for the self energies �C and �Q in the random phase approximation.
Dashed lines correspond to G0 and wavy lines to D0.

reveal the energy shift and damping due to the interaction Hamiltonian Hint . G and D are the
Green functions for the electrons and phonons, respectively. The undisturbed Green functions
are denoted by G0 and D0.

The Feynman diagrams for the self energies �C and �Q are depicted in figure 5.
The evaluation of these diagrams reveals for the electron self energy

�C(γ, ω) = �1
C(γ, ω) + iı�2

C(γ, ω) (15a)

�1
C(γ, ω) = 1

N

∑
�qν

∑
γ ′

∣∣∣∣∑
mα

V �qν
mα Oα

m(γ, γ ′)
∣∣∣∣2( n �qν − pγ ′

ω − εγ ′ + ω�qν

+
n �qν + 1 + pγ ′

ω − εγ ′ − ω�qν

)
(15b)

�2
C(γ, ω) = 1

N

∑
�qν

∑
γ ′

∣∣∣∣∑
mα

V �qν
mα Oα

m(γ, γ ′)
∣∣∣∣2

((n �qν − pγ ′)δ(ω − εγ ′ + ω�qν)

− (n �qν + 1 + pγ ′)δ(ω − εγ ′ − ω�qν)) (15c)

where the following abbreviations are used:

n �qν = 1

eω�qν/kB T − 1
, pγ = Z−1

0 exp

(−εγ

kBT

)
, Z0 =

∑
γ

exp

(−εγ

kBT

)
. (16)

�1
C is the real part and �2

C the imaginary part of the self energy �C . With equations (14a) and
the self energy operator, the electron Green function of the disturbed system (in RPA) is given
by:

G(γ, ω) = (ω − εγ − �C)−1 = (ω − εγ − �1
C − iı�2

C)−1. (17)

The corresponding neutron scattering function, SC(γ, ω), for the CEF excitations is
determined by the imaginary part of the Green function G. This expression reads:

SC (γ, ω) = �2
C(γ, ω)

(ω − εγ − �1
C(γ, ω))2 + (�2

C(γ, ω))2
. (18)

The CEF–phonon interactions also change the phonon properties. Treating the phonon
self energy in the same way as the electron self energy, the phonon self energy �Q can similarly
be separated into real and imaginary parts:

�Q(�qν, ω) = �1
Q(�qν, ω) + iı�2

Q(�qν, ω) (19a)
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Table 5. Interaction strength V �qν
mα for the 7.5 meV Ag-mode at the �-point given in units of kelvin.

α

m 0 2 4 6

2 8.68 × 10−1 −9.17 × 10−1

4 3.26 × 10−4 −1.42 × 10−2 1.09 × 10−3

6 1.64 × 10−4 2.27 × 10−4 1.70 × 10−4 1.40 × 10−4

�1
Q(�qν, ω) =

∑
γ,γ ′

∣∣∣∣∑
mα

V �qν
mα Oα

m(γ ′, γ )

∣∣∣∣2 pγ ′ − pγ

ω − εγ + εγ ′
(19b)

�2
Q(�qν, ω) = −

∑
γ,γ ′

∣∣∣∣∑
mα

V �qν
m,α Oα

m(γ ′, γ )

∣∣∣∣2

δ(ω − εγ + εγ ′)(pγ ′ − pγ ). (19c)

The neutron scattering function for the phonon subsystem SQ(�qν, ω) is given by the
imaginary part of the phonon Green function D (equation (14b)):

SQ(�qν, ω) = ω2
�qν

�2
Q(�qν, ω)

(ω2 − ω2
�qν

− ω�qν�
1
Q(�qν, ω))2 + ω2

�qν
(�2

Q(�qν, ω))2
. (20)

Equations (18) and (20) will be used for the analysis of experimental data of NdCu2. For
this discussion it is important to note that the measured line width as well as the line position
in both subsystems (CEF and phonons) are temperature dependent due to the terms n �qν and
pγ occurring in equations (15b), (15c), (19b) and (19c).

6. Influence of the CEF–phonon interaction

6.1. Calculation of the interaction strength

The neutron scattering functions are determined by the self energies �C and �Q , which

depend on the total interaction strength | ∑mα V �qν
mα Oα

m(γ, γ ′)|2. We first have to calculate

the interaction strength V �qν
mα (see equation (12); no index i is needed because all Nd-ions are

equivalent). In order to calculate V �qν
mα , it is necessary to know the polarization vector of the

phonon under consideration. This vector is given by the solution of the Born–von Karman
model (see [19]).

From table 3 it follows that there are discrepancies between the CEF parameters obtained
from the experiment and those from the point charge model (PCM) calculation. This is why the
scaling parameters Smα (σ exp

mα = Smασ PCM
mα ) have been introduced. The calculation was done in

the scope of the point charge model using the displacements from the Born–von Karman model
and then the thus obtained interaction strength was scaled with the corresponding Smα-value.

The interaction strength V �qν
mα obtained in this way at the �-point for the 7.5 meV Ag-mode

are given in table 5.
Values of V �qν

mα for other �q-vectors and ν-values have been obtained by the same procedure.
For the calculation of the total interaction strength we further need the matrix elements of the
Stevens operator equivalents between CEF eigenstates: Oα

m(γ, γ ′). As an example, values of
the total interaction strength for the mode under consideration are given in table 6. In this table
values are given only for five CEF states γ although there are in total 10 CEF states in the
Nd3+-ion. As the states are degenerated (Kramers degeneration), there exist for each state γ a
state γ̃ with the same energy. Only the matrix elements between the five states γ are given.
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Table 6. Total interaction strength | ∑
mα V �qν

mα Oα
m (γ, γ ′)|2 for the 7.5 meV Ag-mode at the �-point

given in units of K2.

γ ′

γ 5 4 3 2 1

5 895 37.4 115 48.3 19
4 37.4 621.4 0.48 74.1 59.8
3 115 0.48 85.2 22.4 179.3
2 48.3 74.1 22.4 33.1 25.1
1 19 59.8 179.3 25.1 2.31

The matrix elements between one of the five states γ and one of the five states γ̃ vanish and
the matrix element between two states out of the five states γ̃ are equal to the matrix element
between the corresponding γ -states.

6.2. Influence of the CEF–phonon interaction on the CEF excitations

As a consequence of the CEF–phonon interaction on the CEF-spectra a pronounced temperature
dependent shift and broadening of the CEF level in the neutron spectra is expected. In order to
select these CEF level where the shift and broadening is strongest and therefore most exactly
measurable, we consider the neutron scattering function (equation (18)). A measure for the
broadening and the shift is given by the terms �2

C (equation (15c)) and �1
C (equation (15b)).

Both functions include a sum over all the �q-vectors inside the first Brillouin zone and the
phonon branches ν. The summation can, however, be limited to those phonon modes able
to couple to the CEF level (as mentioned above these are the Ag modes). Furthermore the
influence of the interaction strength will be significant only if εγ + ω�q,ν ∼ ω for phonon
creation or εγ − ω�q,ν ∼ ω for phonon annihilation. An inspection of figure 2 immediately
shows that there is one ideal configuration where these necessary conditions for the observation
of the CEF–phonon interaction are ideally fulfilled. This is the ε4 CEF level and the 7.5 meV
Ag-phonon mode in the neighbourhood of the zone centre.

For the discussion of the experimental data it is important to note that due to the CEF–
phonon interaction, a temperature dependent shift and broadening of the measured CEF level is
the consequence of this interaction. In equations (15b) and (15c) as well as in equations (19b)
and (19c) the terms n �qν and pγ reflect this temperature dependency.

In order to determine the CEF–phonon interaction strength we investigated the temperature
dependence of the shift and broadening of the ε4. Figure 6 shows the neutron line shape in
the vicinity of the ε4 CEF level at different temperatures. The (020) �-point was used for
these measurements since the neutron scattering vector κ is small there, which means that
the measured intensity is predominantly due to the CEF scattering. Simultaneously we also
studied the temperature dependence of the shift of the ε5 CEF level at the (020) �-point (the
ε5 CEF level is well separated from its nearest Ag-phonon mode (see figure 2); a shift of this
level will hardly be due to the CEF–phonon interaction).

Difficulties in the quantitative determination of the line broadening result from the fact
that there are two further mechanisms giving rise to a broadening. One is caused by the
electron–electron interaction [23] and another due to the spectrometer function (specific for
the experimental facility used). Therefore in the following we will not further analyse the line
broadening but consider the line shift and compare it with the theory.

Details of the fit procedure: to get the absolute value of the temperature dependence of
the line shift due the CEF–phonon interaction we replace η0+ in equation (14a) by a finite line
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Figure 6. Neutron scattering intensity in the vicinity of the ε4-CEF level measured at the (020)
�-point at different temperatures.

Figure 7. Temperature dependent shift of the centre of gravity of the ε4 CEF level (•) and the ε5
CEF level (�) both measured at the (020) �-point. The lines represent the calculation (see the
text).

width �, i.e. we replace in equation (15b):

1

ω − E
→ ω − E

(ω − E)2 + �2
(21)

where E is an abbreviation for (εγ ′ − ω�qν) or (εγ ′ + ω�qν). The used value of � was 0.9 meV
(deduced from the experimental data). The temperature shift for the ε4 and ε5 CEF level are
compared in figure 7. To test whether the temperature variation of the shift of the ε4-level given
by (•)-symbols can be described by equation (15b); this has been fitted to the data. As can be
seen there is a quite good qualitative agreement (solid curves correspond to equation (15b)).

For the description of the ε5 CEF line shift caused by an increase of the temperature the
above mentioned electron–electron interaction mechanism (given in detail in [23]) is sufficient
to explain the small shift of the ε5 CEF level (line through �-symbols).
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Figure 8. Neutron scattering intensity in the vicinity of the (040)�-point (•). The intensity is mainly
caused by the phonon scattering mechanism, although a contribution due to the ε4 CEF scattering
will still exist at this high κ-value. The full curve through the data points is calculated taking into
account both scattering mechanisms. The dotted and the dashed curves are the contributions of
the 7.5 meV Ag-phonon mode and the ε4 CEF level, respectively. Inset: neutron peak shape and
position of the ε4 CEF level at the (030) zone boundary (the curve is a guide for the eye).

6.3. Influence of the CEF–phonon interaction on the phonons

For the investigation of the 7.5 meV Ag-phonon mode shift due to the CEF–phonon interaction,
measurements at the (040) �-point were performed. Due to the much larger vector κ (compared
to the (020) �-point as before) the phonon scattering will dominate the neutron peak intensity.

In figure 8 an example is given. In the main frame the neutron scattering intensity measured
at the (040) �-point is shown. The inset shows the neutron scattering intensity at the (030)
zone boundary (both data are measured at 50 K). As can be seen from figure 2(a) the (030)
peak shown in the inset depicts the ε4 CEF level at the zone boundary. The dotted and the
dashed curves are the positions of the 7.5 meV phonon mode and the ε4 CEF level at 50 K,
respectively. The full curve through the data points results from the combined effects of both
scattering mechanisms. To determine the shift of the 7.5 meV Ag-phonon mode position in
the scope of the theory given above the self energies �1

Q and �2
Q in equation (20) have to be

calculated. For the theoretical CEF broadening we make use of the replacement η0+ → �

(analogous to the replacement given by equation (21)), and apply it in the equations (19b),
(19c) for the phonon self energies. The numerical value for � (=0.9 meV) was obtained as
an average of the FWHM of the neutron peaks in the range from 50 K to room temperature.

In figure 9 the neutron scattering intensity at the (040) �-point at various temperatures is
given by the symbols. The line through the data points are (as explained for the 50 K data in
figure 8) due to the dominating phonon scattering and those caused by the CEF contribution.
The centre of gravity of the Ag-phonon mode peak has been determined and presented by �-
symbols in figure 10. The full curve shows the calculated shift of the 7.5 meV Ag-phonon mode
given by equation (20). As a further proof that the observed temperature shift of the 7.5 meV
Ag-phonon mode in NdCu2 is indeed due to the CEF–phonon interaction we have studied
the temperature shift of the corresponding Ag-phonon mode of the isostructural nonmagnetic
YCu2 compound. Since there is no CEF–phonon interaction, any shift of phonon modes can
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Figure 9. Temperature dependence of the 7.5 meV Ag-
phonon mode measured at the (040) �-point. The lines
through the data points are calculated taking into account
both scattering mechanisms (as explained in connection
with figure 8).

Figure 10. Temperature dependent shift of the 7.5 meV Ag-phonon mode of NdCu2 together with
the corresponding Ag-mode of YCu2. The full curve gives the calculated Ag-phonon mode shift
according to equation (20). The dashed line through the YCu2-data points is due to the shift of the
YCu2 Ag-phonon mode caused by the electron–electron interaction mechanism.

only be caused by the electron–electron interaction. The lattice dynamics of this nonmagnetic
compound has been presented in [19].

7. Conclusion

The most essential results of this work can be summarized as follows:

• The lattice dynamics of NdCu2 has been studied by inelastic neutron diffraction
experiments on a single crystal and on a powdered sample material (figures 2 and 3).

• The single crystal data were fitted by an axially symmetric Born–von Karman spring
model. For a satisfying fit of the neutron data at least 10 springs with 20 force constants
are required.
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• A comparison of the calculated PDOS (from the Born–von Karman fit) and the measured
PDOS (from a time-of-flight experiment) shows good agreement.

• We have confirmed a measurable CEF–phonon interaction in this orthorhombic
intermetallic compound studying the interplay of the ε4 CEF excitation and the 7.5 meV
Ag-phonon mode as a function of temperature.
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